pub struct SvdResult<T: Scalar> {
pub u: Tensor<T>,
pub s: Tensor<T>,
pub vt: Tensor<T>,
}Expand description
SVD result: A = U * diag(S) * Vt.
For an input of shape (m, n, *) with k = min(m, n):
u: shape(m, k, *)s: shape(k, *)(singular values, descending order)vt: shape(k, n, *)
§Examples
ⓘ
use tenferro_linalg::svd;
use tenferro_tensor::{Tensor, MemoryOrder};
use tenferro_device::LogicalMemorySpace;
let a = Tensor::<f64>::zeros(&[3, 4],
LogicalMemorySpace::MainMemory, MemoryOrder::ColumnMajor);
let result = svd(&a, None).unwrap();
assert_eq!(result.s.ndim(), 1);Fields§
§u: Tensor<T>Left singular vectors. Shape: (m, k, *).
s: Tensor<T>Singular values (descending order). Shape: (k, *).
vt: Tensor<T>Right singular vectors (conjugate-transposed). Shape: (k, n, *).
Auto Trait Implementations§
impl<T> Freeze for SvdResult<T>
impl<T> !RefUnwindSafe for SvdResult<T>
impl<T> Send for SvdResult<T>
impl<T> Sync for SvdResult<T>
impl<T> Unpin for SvdResult<T>where
T: Unpin,
impl<T> !UnwindSafe for SvdResult<T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more