pub struct QrResult<T: Scalar> {
pub q: Tensor<T>,
pub r: Tensor<T>,
}Expand description
QR decomposition result: A = Q * R.
For an input of shape (m, n, *) with k = min(m, n):
q: shape(m, k, *)(orthonormal columns)r: shape(k, n, *)(upper triangular)
§Examples
ⓘ
use tenferro_linalg::qr;
use tenferro_tensor::{Tensor, MemoryOrder};
use tenferro_device::LogicalMemorySpace;
let a = Tensor::<f64>::zeros(&[4, 3],
LogicalMemorySpace::MainMemory, MemoryOrder::ColumnMajor);
let result = qr(&a).unwrap();
assert_eq!(result.q.dims(), &[4, 3]);
assert_eq!(result.r.dims(), &[3, 3]);Fields§
§q: Tensor<T>Orthonormal factor. Shape: (m, k, *).
r: Tensor<T>Upper triangular factor. Shape: (k, n, *).
Auto Trait Implementations§
impl<T> Freeze for QrResult<T>
impl<T> !RefUnwindSafe for QrResult<T>
impl<T> Send for QrResult<T>
impl<T> Sync for QrResult<T>
impl<T> Unpin for QrResult<T>where
T: Unpin,
impl<T> !UnwindSafe for QrResult<T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more