Crate tenferro_burn

Crate tenferro_burn 

Source
Expand description

Bridge between the Burn deep learning framework and tenferro tensor network operations.

This crate allows Burn tensors to be used with tenferro’s einsum and tensor network contraction routines, enabling seamless integration of tensor network methods into Burn-based deep learning pipelines.

§Examples

use burn::backend::NdArray;
use burn::tensor::Tensor;
use tenferro_burn::einsum;

// Matrix multiplication via einsum
let a: Tensor<NdArray<f64>, 2> = Tensor::ones([3, 4], &Default::default());
let b: Tensor<NdArray<f64>, 2> = Tensor::ones([4, 5], &Default::default());
let c: Tensor<NdArray<f64>, 2> = einsum("ij,jk->ik", vec![a, b]);

Modules§

backward
Backward-mode (autodiff) implementation of TensorNetworkOps for the [Autodiff<B, C>] backend.
convert
Conversion utilities between Burn tensor primitives and tenferro tensors.
forward
Forward-mode (inference) implementation of TensorNetworkOps for the NdArray backend.

Traits§

TensorNetworkOps
Trait for backends that support tenferro tensor network operations.

Functions§

einsum
High-level einsum on Burn tensors, dispatching to the backend’s TensorNetworkOps::tn_einsum implementation.