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A Overview of the lecture and acknowledgement
Day 1 (1.5 hours):
1. Short talk on TCI and quantics and their applications
2. CI of matrices

Day 2 (1.5 hours):
1. TCI

Day 3 (1.5 hours):
1. Applications
2. Hands-on exercises (if time permits)

1



This lecture is based on [1] and many fruitful discussions with the authors, especially Y.
Fernández, X. Waintal, J. von Delft, and M. K. Ritter, as well as M. Stoudenmire. The
lecture follows [1], but I have modified some parts to make it more accessible to beginners
and more practical based on new insights from my research.

B Cross Interpolation (CI) of matrices
B.1 Basic linear algebra
• The rank of a matrix is the number of linearly independent rows or columns (column rank

and row rank are the same).
• A rank-revealing factorization is a factorization/decomposition that reveals the rank of a

matrix as follows:
‣ SVD: 𝐴 = 𝑈Σ𝑉 †

• Condition number of 𝐴: 𝜅(𝐴) is the ratio of the largest and smallest singular values of 𝐴.
• Do not compute the inverse of an ill-conditioned matrix. 𝐵𝐴−1 can be computed by

solving 𝐴𝑋 = 𝐵 by a numerically stable solver.

B.2 MPS
Let’s first review matrix product states (MPSs) before we move on to matrix CI and TCI.
This is because MPS and TCI share some similar concepts. An MPS is a 1D tensor network
with a chain of (core) tensors:

𝐹𝜎1𝜎2⋯𝜎ℓ⋯𝜎ℒ =
𝜎1 𝜎2 ⋯ 𝜎ℓ ⋯ 𝜎ℒ

≈
𝜎1 𝜎2 ⋯ 𝜎ℓ ⋯ 𝜎ℒ

𝜒1 𝜒2 𝜒ℓ
(1)

An MPS has a bond dimension 𝜒 that controls the number of parameters in the MPS. The
core tensors are not unique and an MPS has a gauge freedom. A tensor can be decomposed
into an MPS by a series of singular value decompositions (SVD).

MPS/DMRG was originally developed for quantum many-body systems, but it has been
applied to various fields in science and engineering. In applied mathematics, it is called
tensor train (TT) decomposition.

B.3 Cross Interpolation (CI)
Let me introduce CI as an alternative to SVD. In SVD, the left and right singular vectors are
results of complex computations of the original matrix. The result of CI is more interpretable
than SVD in the sense that the left and right matrices are slices of the original matrix.

B.3.1 CI formula
Slicing 𝑚 × 𝑛 matrix: 𝐴 ∈ ℝ𝑚×𝑛 or 𝐴 ∈ ℂ𝑚×𝑛.

• Ordered set of all rows: 𝕀 = {1, …, 𝑚}
• Ordered set of all columns: 𝕁 = {1, …, 𝑛}
• Subset of rows (pivot list): ℐ = {𝑖1, …, 𝑖𝜒̃}
• Subset of columns (pivot list): 𝒥 = {𝑗1, …, 𝑗𝜒̃}
• Slice of 𝐴: [𝐴(ℐ,𝒥)]𝛼𝛽 = {𝐴(𝕀, 𝕁)}𝑖𝛼,𝑗𝛽

CI formula of rank 𝜒 for 𝐴:

𝐴(𝕀, 𝕁) ≈ 𝐶𝑃−1𝑅 = 𝐴(𝕀,𝒥)𝐴(ℐ,𝒥)−1𝐴(ℐ, 𝕁) ≡ 𝐴(𝕀, 𝕁) (2)
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≈
−1

If 𝑃  is not singular, the CI formula satisfies the following properties:

1. 𝐴(ℐ, 𝕁) = 𝐴(ℐ, 𝕁): CI matches the original matrix in the selected rows.
2. 𝐴(𝕀,𝒥) = 𝐴(𝕀,𝒥): CI matches the original matrix in the selected columns.
3. If 𝐴 is rank 𝜒 and we take 𝜒̃ = 𝜒, 𝐴 = 𝐴: The CI formula matches the original matrix on

all the elements.

Element-wise error bound [2]

For a fixed 𝜒̃, if ℐ∗ and 𝒥∗ are the pivot lists of size 𝜒̃ maximizing the volume of 𝐴(ℐ,𝒥) [=
the absolute value of the determinant of 𝐴(ℐ,𝒥)] as

ℐ∗,𝒥∗ = argmaxℐ,𝒥 vol[𝐴(ℐ,𝒥)], (3)

then the CI formula satisfies

‖𝐴 − 𝐶𝑃−1𝑅‖
∞

≤ (𝑟 + 1)𝜎𝑟+1, (4)

where 𝜎𝑟 is the 𝑟-th singular value of 𝐴 and ‖𝐴‖∞ = max𝑖𝑗|𝐴𝑖𝑗|.

Excerise: Prove property 1

Answer: 𝐴(ℐ, 𝕁) = [𝐴(𝕀,𝒥)𝐴(ℐ,𝒥)−1𝐴(ℐ, 𝕁)](ℐ, 𝕁) = 𝐴(ℐ,𝒥)𝐴(ℐ,𝒥)−1𝐴(ℐ, 𝕁) = 𝐴(ℐ, 𝕁).

In practice, we avoid computing 𝑃−1 explicitly. For simplicity of notation, we assume the
pivots are permutated to the first block:

𝐴 = (𝐴(ℐ1,𝒥1)
𝐴(ℐ2,𝒥1)

𝐴(ℐ1,𝒥2)
𝐴(ℐ2,𝒥2)

) = (𝐴11
𝐴21

𝐴12
𝐴22

), (5)

𝐴 = 𝐶𝑃−1𝑅

= (𝐴11
𝐴21

)𝐴−1
11 (𝐴11 𝐴12)

= ( 𝟙
𝐴21𝐴−1

11
)

⏟⏟⏟⏟⏟
𝐶𝑃−1

(𝐴11 𝐴12) = (𝐴11
𝐴21

)(𝟙 𝐴−1
11 𝐴12)⏟⏟⏟⏟⏟

𝑃−1𝑅

= (𝐴11
𝐴21

𝐴12
𝐴21𝐴−1

11 𝐴12
).

(6)

𝐴 − 𝐴 = (0
0

0
𝐴22 − 𝐴21𝐴−1

11 𝐴12
). (7)

Remarks:
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• 𝐴12𝐴−1
11 (= 𝑋) can be computed by QR (see Appendix B of [3]) or solving 𝐴11𝑋 = 𝐴12 by

prrLU (see Section B.3.3). The latter is more stable.
• 𝐶𝑃−1 and 𝑃−1𝑅 are like the identity matrix for for the pivot lists ℐ1 and 𝒥1, which will

be important for understanding the canonicalization of TCI (see Section C.5).

B.3.2 Pivot selection algorithms
Finding the optimal pivot lists requires a combinatorial search over all possible pivot lists.
There are many heuristic methods based on greedy algorithms, e.g., maxvol algorithm[4].

Toy greedy algorithm (only for educational purposes)

1. Choose the row 𝑖1 and column 𝑗1 that maximize |𝐴𝑖𝑗|. Set ℐ1 = {𝑖1} and 𝒥1 = {𝑗1}.

2. Compute the residual matrix 𝐴 − 𝐴𝜒̃=1, where 𝐴𝜒̃=1 = 𝐴[𝕀,𝒥1]𝐴[ℐ1,𝒥1]
−1𝐴[ℐ1, 𝕁].

𝐴 − 𝐴𝜒=1 = −
−1

3. Find the row 𝑖2 and column 𝑗2 that maximize |(𝐴 − 𝐴𝜒̃=1)𝑖𝑗
|. Add 𝑖2 and 𝑗2 to the pivot

lists as ℐ2 = {𝑖1, 𝑖2} and 𝒥2 = {𝑗1, 𝑗2}.

4. Compute the residual matrix 𝐴 − 𝐴𝜒̃=2 and find the next pivots 𝑖3 and 𝑗3.

𝐴 − 𝐴𝜒=2 = −
−1

5. Repeat the above steps until some stopping criterion is met: i.e., ‖𝐴 − 𝐴𝜒̃‖
∞

< 𝜀.

B.3.3 Partial rank-revealing (prr) LU decomposition
prrLU is a numerically stable implementation of the greedy algorithm [1]:
• performs pivot selection (mathematically the same as the above greedy algorithm),
• computes the CI formula, i.e., 𝐶𝑃−1 and 𝑅 in post-processing in a numerically stable

manner.

In prrLU (=truncated LU decomposition with column and row pivoting), any rectangular
matrix 𝐴 ∈ ℝ𝑚×𝑛 or 𝐴 ∈ ℂ𝑚×𝑛 can decomposed as

𝑃perm𝐴𝑄perm = (𝐿11
𝐿21

)𝐷(𝑈11 𝑈12)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑃perm𝐴̃𝑄perm

+ 𝛿, (8)

where
• 𝑃perm and 𝑄perm permute the 𝜒̃ pivots to the first block,
• 𝐿11: lower triangular matrix of size 𝜒̃ × 𝜒̃ with unit diagonal,
• 𝐿22: dense matrix of size (𝑚 − 𝜒̃) × 𝜒̃,
• 𝐷: diagonal matrix of size 𝜒̃ × 𝜒̃,
• 𝑈11: upper triangular matrix of size 𝜒̃ × 𝜒̃ with unit diagonal,
• 𝑈12: dense matrix of size 𝜒̃ × (𝑛 − 𝜒̃),
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• 𝛿: residual matrix (= 𝑃perm(𝐴 − 𝐴)𝑄perm).

Matrices in CI can be computed from the results of prrLU [1]. For instance,

(𝐴11
𝐴21

)(𝐴11)
−1 = (

𝕀𝜒̃

𝐿21(𝐿11)
−1), (9)

where 𝐿11 is well-conditioned. For the details, see Sec 3.3 of [1].

B.4 Numerical experiments
The Hilbert matrix, 𝐻𝑖𝑗 = 1

𝑖+𝑗+1 , is a well-known ill-conditioned low-rank matrix. The
singular values of 𝑁 × 𝑁  Hilbert matrix are super-exponentially decaying at large 𝑁 .

4 × 4 Hilbert matrix:
1
1

1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

Search over all pivot lists of size 𝜒̃ = 4 for 𝑁 = 10 and compare the residual of the CI
formula in the maximum norm sense with that of prrLU. You will find the following:

Figure 1: Residual norm of pivot selections for 𝑁 = 10 and 𝜒̃ = 4. The red line shows the
residual norm of prrLU, which is close to optimal.

Homework Reproduce the above figure by extending the code in Listing 1.

Remark: There is still room to improve the accuracy of pivot selection. See [5] for recent
attempts in this direction.

C Tensor Cross Interpolation (TCI) of tensors
Like exteding SVD to MPS, CI can be extended to higher-order tensors [1,3,6–8].

C.1 Notation
A ℒ-leg tensor 𝐹  is defined as:
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𝐹𝜎1𝜎2⋯𝜎ℓ⋯𝜎ℒ = (10)

• An external index 𝜎ℓ (ℓ ∈ {1, 2…ℒ}) takes 𝑑ℓ different values from a set 𝕊ℓ.
• 𝕀ℓ = 𝕊1 × 𝕊2 × … × 𝕊ℓ is the set of all row multi-indices up to site ℓ. An element 𝑖 ∈ 𝕀ℓ is a

row multi-index taking the form 𝑖 = (𝜎1, 𝜎2, …, 𝜎ℓ).
• 𝕁ℓ = 𝕊ℓ × 𝕊ℓ+1 × … × 𝕊ℒ is the set of all column multi-indices from site ℓ upwards. An

element 𝑗 ∈ 𝕁ℓ is a column multi-index taking the form 𝑗 = (𝜎ℓ, 𝜎ℓ+1, …, 𝜎ℒ).
• 𝑖ℓ ⊕ 𝑗ℓ+1 ≡ (𝜎1, 𝜎2, …, 𝜎ℓ, 𝜎ℓ+1, …, 𝜎ℒ) denotes the concatenation of complementary multi-

indices.
• Short-hand notation: 𝝈 = (𝜎1, 𝜎2, …, 𝜎ℒ).

Reshape a tensor to a matrix at bond ℓ:

𝐹𝜎1⋯𝜎ℓ,𝜎ℓ+1⋯𝜎ℒ = 𝐹𝑖,𝑗,

=
(11)

where 𝑖ℓ = (𝜎1, 𝜎2, …, 𝜎ℓ) ∈ 𝕀ℓ and 𝑗ℓ+1 = (𝜎ℓ+1, …, 𝜎ℒ) ∈ 𝕁ℓ+1.

C.2 TCI formula
A ℒ-leg tensor 𝐹  can be approximated by a TT with slices of the tensor.

CI at bond 1

≈ , (12)

with
• pivot lists ℐ1 ⊆ 𝕀1 = 𝕊1,
• pivot lists 𝒥2 ⊆ 𝕁2 = 𝕊2 × ⋯ × 𝕊ℒ,
• indices for pivots 𝑖1 ∈ ℐ1 and 𝑗2 ∈ 𝒥2,
• dummy index 𝑖0.

Slices of the tensor:

[𝑇1]𝑖0𝜎1𝑗2
≡ 𝐹𝜎1⊕𝑗2

,

[𝑃1]𝑖1𝑗2
≡ 𝐹𝑖1⊕𝑗2

,

[𝑅1]𝑖1(𝜎2⋯𝜎ℒ)
≡ 𝐹𝑖1⊕(𝜎2⋯𝜎ℒ).

(13)

CI at bond 2

Reshape 𝑅1 to a matrix and apply CI:

≈ . (14)

with
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[𝑇2]𝑖1𝜎2𝑗3
≡ 𝐹𝑖1⊕𝜎2⊕𝑗3

,

[𝑃2]𝑖2𝑗3
≡ 𝐹𝑖2⊕𝑗3

,

[𝑅2]𝑖2(𝜎3⋯𝜎ℒ)
≡ 𝐹𝑖2⊕(𝜎3⋯𝜎ℒ).

(15)

and
• pivot lists ℐ2 ⊆ ℐ1 × 𝕊2 (left nested),
• pivot lists 𝒥3 ⊆ 𝕁3 = 𝕊3 × ⋯ × 𝕊ℒ,
• 𝑖2 ∈ ℐ2, 𝑗3 ∈ 𝒥3.

By substituting Equation 14 into Equation 12, we obtain

≈ . (16)

TCI formula

By repeating the same procedure to the right end,

𝐹𝜎1⋯𝜎ℒ ≈ 𝐹𝜎1⋯𝜎ℒ = 𝑇 𝜎1
1 𝑃−1

1 𝑇 𝜎2
2 𝑃−1

2 …𝑃−1
ℒ−1𝑇

𝜎ℒ
ℒ ,

≈ 𝐹𝜎1⋯𝜎ℒ = ,
(17)

where ℐ0 = 𝒥ℓ+1 = {()} and the slices of the tensors:

(𝑃ℓ)𝑖ℓ𝑗ℓ+1
= 𝐹𝑖ℓ,𝑗ℓ+1

= ,

[𝑇ℓ]𝑖ℓ𝜎ℓ𝑗ℓ+1
= 𝐹𝑖ℓ⊕𝜎ℓ⊕𝑗ℓ+1

= (one-dimensional slice for 𝜎ℓ).
(18)

By construction, ℐ2 ⊆ ℐ1 × 𝕊2, ℐ3 ⊆ ℐ2 × 𝕊3, ⋯, ℐℒ−1 ⊆ ℐℒ−2 × 𝕊ℒ−1 (left nested up to ℒ− 1,
see Section C.3).

We can construct pivot lists in an arbitrary way. For any pivot lists, Equation 17 yields a TT
as long as the pivot matrices 𝑃ℓ are invertible. Interpolation properties and accuracy of the
approximation depend on the choice of the pivot lists.

Comparison with matrix CI

𝐹𝑖𝑗 ≈ 𝐶𝑖𝑗ℓ+1
(𝑃−1

ℓ )
𝑗ℓ+1,𝑖ℓ

𝑅𝑖ℓ𝑗,

≈ ,
(19)

where 𝑖 ∈ 𝕀ℓ, 𝑗 ∈ 𝕁ℓ, the pivot lists ℐℓ ⊆ 𝕀ℓ and 𝒥ℓ+1 ⊆ 𝕁ℓ+1:

(𝑃ℓ)𝑖ℓ𝑗ℓ+1
= 𝐹𝑖ℓ,𝑗ℓ+1

, 𝐶𝑖𝑗ℓ+1
= 𝐹𝑖⊕𝑗ℓ+1

, 𝑅𝑖ℓ,𝑗 = 𝐹𝑖ℓ⊕𝑗. (20)

C.3 Nesting conditions and interpolation properties
• Left nested up to ℓ: ℐ0 < ℐ1 < ⋯ < ℐℓ.
• Right nested up to ℓ: 𝒥ℓ > 𝒥ℓ+1 > ⋯ > 𝒥ℒ+1.
• Fully nested: ℐ0 < ℐ1 < ⋯ < ℐℒ−1 and 𝒥2 > 𝒥3 > ⋯ > 𝒥ℒ+1.

If the pivots are left-nested up to ℓ − 1 and right-nested up to ℓ + 1 (nested w.r.t. 𝑇ℓ),
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𝐹𝑖⊕𝜎⊕𝑗 = [𝑇ℓ]𝑖𝜎𝑗 = 𝐹𝑖⊕𝜎⊕𝑗 ∀𝑖 ∈ 𝒥ℓ−1, 𝜎 ∈ 𝕊ℓ, 𝑗 ∈ 𝒥ℓ+1. (21)

Pivot-wise sufficient condition

For a given element [𝑇ℓ]𝑖𝜎𝑗, the TCI formula interpolates it perfectly if all the following
conditions are satisfied:
• ∀ℓ′ ≤ ℓ, 𝝈1:ℓ′ ∈ ℐℓ′ ,
• ∀ℓ′ ≥ ℓ + 1, 𝝈ℓ′:ℒ ∈ 𝒥ℓ′ ,

where 𝝈 = 𝑖 ⊕ 𝜎 ⊕ 𝑗 and 𝝈𝑎:𝑏 is the subvector of 𝝈 from 𝑎 to 𝑏. This statement can be proved
by extending Appendix A.3 of [1].

C.4 Basic learning algorithms
We show hueristic algorithms to find good pivots, which are used in our implementation of
reset mode and full pivot search described in [1].

Requirements The target tensor can be evaluated at any multi-index.

Tasks For a given tolerance 𝜀 in the maximum norm sense, find pivot lists at all bonds to
approximate the target tensor without reading the whole tensor.

C.4.1 General 2-site update strategy
This idea is not written explicitly in [1] .

We find good pivot lists at all bonds:
1. Find 𝝈̂ with 𝐹(𝝈̂) ≠ 0, and construct initial pivots: ℐℓ = {(𝜎1, 𝜎2, …, 𝜎ℓ)}, 𝒥ℓ+1 =

{(𝜎ℓ+1, 𝜎ℓ+2, …, 𝜎ℒ)} for all ℓ.
2. At each ℓ, we update ℐℓ and 𝒥ℓ+1 by the following steps.

1. Generate candidate ℐℓ and 𝒥ℓ+1. Their sizes are larger than ℐℓ and 𝒥ℓ+1 by a factor of
𝑂(1).

2. Sketch the unfolded matrix 𝐹(𝕀ℓ, 𝕁ℓ+1) as 𝐹(ℐℓ,𝒥ℓ+1).
3. Decompose the sketched matrix by prrLU to tolerance 𝜀 (or a slightly smaller for

safety¹) and select the new pivot lists ℐℓ′ ⊆ ℐℓ and ℐ′
ℓ+1 ⊆ 𝒥ℓ+1.

4. Replace ℐℓ and 𝒥ℓ+1 with the new ones ℐ′
ℓ and 𝒥′

ℓ+1.

Sketch

CI

3. Iterate the above steps until convergence, i.e., the sizes of the pivot lists stop growing.
4. Construct a TT by evaluating Equation 17, where 𝑇𝑃−1 or 𝑃−1𝑇  can be computed by

solving linear systems².

Remarks:
• In TCI, it is convinient to measure the error in terms of maximum norm.
• The algorithm selects good pivots from the candidate pivot lists and does not necessarily

preserved the previous pivot lists (reset mode in [1])³.

¹This is because the residual error in the matrix CI is not equal to the error of the TCI formula in general.
These two errors match if ℐ0 < ℐ1 < ⋯ < ℐℓ−1 < ℐℓ and 𝒥ℓ+1 > 𝒥ℓ+2 > ⋯ > 𝒥ℒ+1. Refer to Sec. 4.3.1.

²Since the pivot matrices are ill-conditioned, we need to use a numerically stable solver. We observed that
prrLU (LU with column and row pivoting) is more robust than QR.
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• In the abovementioned algorithm, we select pivots to minimize the residual error of TCI
in terms of maximum norm. Alternatively, we can minimize the integration error of TCI
(Sec. 4.3.7 of [1]).

C.4.2 Sweeps with 2-site updates
We perform back and forth sweeps for ℓ = 1, 2, …,ℒ− 1. At each ℓ, we construct candidates
ℐℓ and 𝒥ℓ+1 from pivot lists at neighboring bonds:

• ℐℓ = ℐℓ−1 × 𝕊ℓ ∪ ℐℓ,
• 𝒥ℓ+1 = 𝕊ℓ+1 ×𝒥ℓ+2 ∪𝒥ℓ+1,

where we ensures that the candidate pivot lists includes the current pivot lists. But, this
breaks the nesting conditions: ℐℓ−1 < ℐℓ and 𝒥ℓ+1 > 𝒥ℓ+2 after the update4.

We explore the full local space of 𝕊ℓ and 𝕊ℓ+1 in the enviroment of ℐℓ−1 and 𝒥ℓ+2:

The size of the candidate pivot lists is approximately 𝑑𝜒̃ + 𝜒̃, where 𝑑 is the dimension of
external indices of the tensor and 𝜒̃ is the number of current pivots.

Then, the new pivot lists are selected by prrLU from the candidate pivot lists. During
sweeps, good pivots may propagate between neighboring bonds5.

Computational cost:
• The number of function evaluations: 𝑂(ℒ𝑑2𝜒̃2)
• The computational time of prrLU: 𝑂(ℒ𝑑2𝜒̃3)

In block rook search mode (see Sec. 3.3.2 of [1]), the scalings are 𝑂(ℒ𝑑𝜒̃2) and 𝑂(ℒ𝑑𝜒̃3),
respectively.

C.4.3 Global pivot insertion
Local updates may fail to find good pivots and miss important features of the tensor. A very
simple example is a tensor 𝐹  has nonzero elements only at 𝝈 = (0, 0, ⋯, 0) and 𝝈 =
(1, 1, ⋯, 1) (length ℒ > 2). If the intial pivots are initialized with 𝝈̂ = (0, 0, ⋯, 0), the 2-site
updates fail to reach 𝝈̂ = (1, 1, ⋯, 1). This is analogous to ergodicity problems in Markov
Monte Carlo methods.

During learning, we can a multi-index 𝝈̂ (global pivot) at all bonds:

ℐ′
ℓ = {(𝜎1, 𝜎2, …, 𝜎ℓ)} ∪ ℐℓ,

𝒥′
ℓ+1 = {(𝜎ℓ+1, 𝜎ℓ+2, …, 𝜎ℒ)} ∪𝒥ℓ+1

(22)

for all ℓ.

³An alternative to reset mode is accumulative mode where we never remove the previous pivot lists
and keep adding new pivots to the pivot lists. Accumulative mode requires to read a smaller number of tensor
elements. But it is less numerically stable because the pivot matrices are worse conditioned.

4In Sec. 4.3 of [1], a variant without including the current pivot lists is mainly discussed. In this case, the
slice of the tensor on the candidate pivots is a 4-leg tensor, Π = 𝐹(ℐℓ,𝒥ℓ+1). But, we observed that including
the current pivot lists is more important than preserving the nesting condition.

5It is shown that one can updates all bonds ℓ = 1, 2, ⋯,ℒ− 1 in parallel at one iteration step [8]. In this
case, the candidate pivot lists are passed between neighboring bonds during iterations.
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Inserting a global pivot extends the exploration of the local space more than the inserted
pivot itself. More specifically, we explore the configuration space consisting of the cross
product of the new row and existing columns, and the new column and existing rows (like
genetic algorithm).

After inserting a global pivot, some of the pivot matrices are non-singular or non-invertible,
which will be fixed by removing linearly dependent (redundant) pivots by prrLU of these
pivot matrices with a machine-precision tolerance (see Sec. 4.4.2 of [1]). Although this may
break the nesting conditions, we observed that the TCI formula interpolates the added global
pivot perfectly (no math proof yet).

Figure 2 shows the effect of a global pivot insertion for the abovementioned example.

Figure 2: Global pivot insertion. Taken from [1].

We can find such good global pivots by some prior knowledge of the tensor, i.e., its
symmetry, or by a global search to find the best pivot with a large interpolation error.
Reference [9] showed that the ergodicity problem can be (partially) circumvented by
alternating between local and global updates with automatic greedy selection of global
pivots.

C.4.4 Error estimates of TCI formula
Two main sources of errors:
1. The algorithm fails to find important features of the tensor.
2. Breaking the nesting conditions does not guarantee the error reported by matrix CIs

matches the actual error of the TCI formula (see Sec. 4.3.1 of [1]).

From experience, the first source is more important than the second one. It is high
recommended to start with a good initial guess, and mix local and global updates.

C.5 Canonical forms of TCI
In this section, we discuss the canonical forms of TCI based on nesting conditions, in better
connection with the canonical forms of MPS.

Left nested

ℐℓ−1 < ℐℓ ⇔ ℐℓ ⊆ ℐℓ−1 × 𝕊ℓ:

𝐴𝑖ℓ−1,𝑖ℓ
= ∑

𝑗ℓ+1

[𝑇 𝜎ℓ
ℓ ]

𝑖ℓ−1,𝑗ℓ+1
(𝑃−1

ℓ )
𝑗ℓ+1,𝑖′

ℓ
(23)
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The tensor 𝐴ℓ can be regarded as a tall matrix with rows 𝑖ℓ−1 ⊕ 𝜎ℓ and columns 𝑖ℓ. The
projection of 𝐴ℓ to the rows 𝑖ℓ−1 ⊕ 𝜎ℓ ∈ ℐℓ is the identity matrix (cf. Equation 6):

𝐴ℓ = (𝑇 ′
ℓ

𝑇 ″
ℓ
)(𝑃ℓ)

−1 = ( 𝕀
𝑇 ″

ℓ 𝑃−1
ℓ

), (24)

where the rows of the first block 𝑇 ′
ℓ  satisfy 𝑖ℓ−1 ⊕ 𝜎ℓ ∈ ℐℓ.

Right nested

𝒥ℓ > 𝒥ℓ+1 ⇔ ⇔ 𝒥ℓ ⊆ 𝕊ℓ ×𝒥ℓ+1:

The projection to the columns 𝑗ℓ′ ⊕ 𝜎ℓ ∈ 𝒥ℓ+1 is the identity matrix:

𝐵ℓ = (𝑃−1
ℓ )(𝑇 ′

ℓ 𝑇 ″
ℓ ) = (𝕀 𝑃−1

ℓ 𝑇 ″
ℓ ). (25)

Nested with respect to 𝑇ℓ

A TCI is nested with respect to 𝑇ℓ if ℐ0 < ℐ1 < ⋯ < ℐℓ and 𝒥ℓ+1 > ⋯ > 𝒥ℒ+1:

The TCI formula interpolates the slice 𝑇ℓ (see Equation 21). This is analogous to the mixed
canonical form of MPS.

C.6 Other important topics
• Converting a general MPS/TT to a fully nested TCI using prrLU (Sec. 4.5.1 of [1])
• Addition of MPSs, zip-up contraction of MPSs and MPOs using prrLU (Sec. 4.7 of [1])
• A 0-site TCI update of 𝑃ℓ removes redundant pivots by prrLU to make the pivot matrix

invertible (Sec. 4.4.2 of [1]). This will be useful after insertion of global pivots.
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D Applications TCI and quantics representation
D.1 Tensorising functions

D.1.1 Natural representation
Function with 𝒩 variables (𝒙 ∈ ℛ𝒩):

(𝒙(𝝈)) = 𝑓(𝑥1(𝜎1), ⋯, 𝑥ℒ(𝜎𝒩)) = (26)

Discrete grid:

𝑥1 → {𝑥1(1), ⋯, 𝑥1(𝑑1)}, ⋯, 𝑥𝒩 → {𝑥𝒩(1), ⋯, 𝑥𝒩(𝑑𝒩)} (27)

Here, 𝑑ℓ is the size of the discretization grid for the ℓ-th variable.

Drawback: If there are coexisting local structures and vastly different length scales, we need
to increase 𝑑ℓ to resolve the local structures.

D.1.2 Quantics representation
Effective for coexisting vastly different length scales [10,11].

Binary conding

𝑖 = 𝑎1 ×ℛ−1 +𝑎2 × 2ℛ−2 + ⋯ + 𝑎ℛ × 20 = (𝑎1𝑎2⋯𝑎ℛ)2, (28)

where 𝑎𝑟 ∈ {0, 1}. The range of the integers that can be represented increases exponentially
with the number of bits ℛ.

Quantics representation (one variable)

Discretize a function 𝑓(𝑥), 𝑥 ∈ [𝑥min, 𝑥max] on an equally spaced grid (size 𝑀 = 2ℛ, spacing
𝛿):

A one-leg tensor of size 𝑀 = 2ℛ:

𝑓(𝑥(𝑚)) = . (29)

By using 𝑚 = (𝜎1⋯𝜎ℛ)2, we can represent the function as a ℛ-leg tensor of size 2 × ⋯ × 2:

Quantics representation (𝒩 variables)

Use binary representations of the variables (𝑛 = 1, ⋯,𝒩): 𝑚𝑛 = (𝜎𝑛1⋯𝜎𝑛ℛ)2:

Interleaved representation:

12



Fused representation:

The bond dimension will strongly depend on the order of the indices (see below).

D.2 TT unfolding
Natural representation

Unfold (decompose) a 𝒩-variable function into a TT:
𝑓(𝑥1, …, 𝑥𝒩) ≈ 𝑀1(𝑥1)𝑀2(𝑥2)…𝑀𝒩(𝑥𝒩),

If the TT is low-rank, we can perform superfast summation:

∫ 𝑑𝒩𝒙𝑓(𝒙) ≈ ∫ 𝑑𝑥1𝑀1(𝑥1) ∫ 𝑑𝑥2𝑀2(𝑥2)… ∫ 𝑑𝑥𝒩𝑀𝒩(𝑥𝒩). (30)

In practice, we use a Gaussian quadrature along each variable, i.e., discretize each variable
into 𝑑ℓ Gauss-Legendre nodes.

Quantics representation

TT unfolding corresponds to the separation across different scales.:

Integration by Riemann sum:

∫ 𝑑𝑥𝑓(𝑥) ≈ 2−ℛ(∑
𝜎1

𝑀(𝜎1))⋯(∑
𝜎ℛ

𝑀(𝜎ℛ)) + 𝑂(2−2ℛ) (31)

The block filled circles are vectors (1
2 , 1

2). Linear computational cost with respect to ℛ:
𝑂(𝜒2ℛ), and exponentially small discretization error.

Good cases for quantics representation:

• Polynomials and exponential functions: 𝑒𝑎𝑥 = 𝑒𝑎 ∑ℛ
ℓ=1 𝜎ℓ2−ℓ

= ∏ℛ
ℓ=1 𝑒𝑎2−ℓ .

• Identity matrix: 𝛿𝑥𝑦 = 𝛿𝜎1𝜎′
1
…𝛿𝜎ℛ𝜎′

ℛ
.

Bad cases for quantics representation:

• 𝑓(𝑥, 𝑦) = 1 if 𝑥2 + 𝑦2 ≤ 1 otherwise 0. The bond dimension brows exponentially with ℛ.

In general, discontinuity or sharp features on a hyperplace is OK, but not on a hypercurve.
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Convolution with tensor Train Operator (TTO):

Quantum Fourier Transform (QFT) MPO has a small entanglement entropy [12,13]:

𝜎ℓ and 𝜎′
ℓ are bits for the variables before and after the QFT, respectively. The order of the

indices is reversed after the QFT. The bond dimension of the QFT MPO is up to 10–20 even
for machine precision irrespectively of ℛ.

Exercise: QTT representation of exponential function

Show that 𝑓(𝑥) = 𝑒𝑥 for 𝑥 ∈ [0, 1] has a QTT representation with bond dimension 1.

Exercise: QTT representation of identity matrix

Find the QTT representation of 𝑓(𝑥, 𝑦) = 𝛿𝑥𝑦 with bond dimension 1, where 𝑥, 𝑦 =
0, 1, ⋯, 2ℛ − 1.

D.3 Combination of quantics and TCI (QTCI)
From [14].

Highly oscillatory function with slowly decaying envelope:

𝑓(𝑥) = cos( 𝑥
𝐵

) cos( 𝑥
4
√

5𝐵
)𝑒−𝑥2 + 2𝑒−𝑥 (𝐵 = 2−30),

∫
ln(20)

0
𝑑𝑥𝑓(𝑥) ≈ 19

10
.

(32)

The following is the results of QTCI with 8706 samples (1 sample per 59,000 oscillations):
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Fast oscillations Slow decay
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E Future research directions
• Highly parallelizable algorithms for TCI

‣ Integration
‣ MPO-MPO contraction

• Extension to tree tensor networks
• Combination with neural networks
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using LinearAlgebra, Combinatorics
import TensorCrossInterpolation as TCI # for prrLU

# Function to create a Hilbert matrix
function hilbert_matrix(N)
    return [1 / (i + j - 1) for i in 1:N, j in 1:N]
end

# Function to compute the residual matrix using CI approximation
function ci_residual(A, I, J)
    tildechi = length(I)
    if tildechi != length(J)
        error("Pivot lists I and J must have the same length")
    end

    # Select pivot submatrix
    A_IJ = A[I, J]  # Pivot submatrix (tildechi×tildechi)
    C = A[:, J]     # (N×tildechi)
    R = A[I, :]     # (tildechi×N)
    
    # Compute determinant of A_IJ
    det_A_IJ = abs(det(A_IJ))
    
    # Solve the linear system instead of computing the inverse
    A_CI = C * (A_IJ \ R)  # Using backslash operator for solving linear equations
    
    # Residual matrix
    Residual = A - A_CI
    residual_norm = norm(Residual, Inf)
    
    return Residual, residual_norm, det_A_IJ
end

# Example execution: N=5, tildechi=3
N = 10
tildechi = 4

A = hilbert_matrix(N)

prrlu_result = TCI.rrlu(A; maxrank=tildechi)

@assert prrlu_result.npivot == tildechi
I_lu = prrlu_result.rowpermutation[1:tildechi]
J_lu = prrlu_result.colpermutation[1:tildechi]

residual_lu = ci_residual(A, I_lu, J_lu)[2]
Listing 1: Code to compute the residual of prrLU for 𝑁 = 10 and 𝜒̃ = 4 using prrLU.
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