pub fn einsum_rrule<T: Scalar + HasAlgebra>(
_subscripts: &str,
_operands: &[&Tensor<T>],
_cotangent: &Tensor<T>,
) -> Result<Vec<Tensor<T>>>Expand description
Reverse-mode rule (rrule) for einsum without building a global tape.
Computes the pullback (vector-Jacobian product) for an einsum operation. Returns one gradient tensor per input operand.
Named after Julia’s ChainRules.jl convention. This API is intended for language interop and manual AD.
§Examples
ⓘ
use tenferro_einsum::einsum_rrule;
use tenferro_tensor::{MemoryOrder, Tensor};
use tenferro_device::LogicalMemorySpace;
let col = MemoryOrder::ColumnMajor;
let mem = LogicalMemorySpace::MainMemory;
let a = Tensor::<f64>::ones(&[2, 3], mem, col);
let b = Tensor::<f64>::ones(&[3, 4], mem, col);
let grad_c = Tensor::<f64>::ones(&[2, 4], mem, col);
let grads = einsum_rrule("ij,jk->ik", &[&a, &b], &grad_c).unwrap();
assert_eq!(grads.len(), 2);